
NASA Contractor Report 201701

PIV Data Validation Software Package

James L. Blackshire
ViGYAN, Inc., Hampton, Virginia

CONTRACT NAS1-19505

June 1997

National Aeronautics and
Space Administration
Langley Research Center

Hampton, Virginia 23681-0001

i

PIV Data Validation Software Package

Abstract

A PIV data validation and post-processing software package was developed to

provide semi-automated data validation and data reduction capabilities for Particle Image

Velocimetry data sets. The software provides three primary capabilities including 1)

removal of spurious vector data, 2) filtering, smoothing, and interpolating of PIV data,

and 3) calculations of out-of-plane vorticity, ensemble statistics, and turbulence statistics

information. The software runs on an IBM PC/AT host computer working either under

Microsoft Windows v3.1 or Windows 95 operating systems.

ii

Acknowledgments

The author wishes to thank several people for assistance and input to the software

development. Foremost of all are Mr. William Humphreys and Mr. Scott Bartram, who

provided technical support and guidance with PIV theory and practice. Their patience and

helpfulness are greatly appreciated. The author also wishes to acknowledge Dr. C.S. Yao

and Mr. Keith Pascal for help with the turbulence statistics and vorticity algorithms.

Finally, I gratefully acknowledge the support provided by the Measurement Science and

Technology Branch at NASA Langely Research Center, Hampton, VA 23681, under

contract No. NAS1-19505.

iii

Contents

Abstract………………………………………………………………………. i

Acknowledgments……………………………………………………………. ii

1.0 Introduction………………………………………………………….. 1

2.0 Software Description………………………………………………… 1

2.1 General Software Description………………………………. 1

2.2 Detailed Software Description………………………………. 2

2.2.1 bandpass(): ………………………………………….. 3

2.2.2 local_median(): ……………………………………… 4

2.2.3 smooth(): …………………………………………….. 4

2.2.4 unshift(): …………………………………………….. 5

2.2.5 ensemble …………………………………………….. 5

2.2.6 standard_dev(): …………………………………….. 5

2.2.7 vorticity(): …………………………………………… 6

2.2.8 fluctuate(): …………………………………………… 6

2.2.9 tstat(): ………………………………………………… 7

2.2.10 write_data(): …………………………………………. 7

3.0 Data Validation ………………………………………………………. 8

3.1 Data Validation Procedures………………………………….. 8

3.1.1 Image Shift Validation Steps…………………………. 10

3.1.2 Flow Data Validation Steps…………………………… 11

3.1.3 Turbulence Statistics Evaluation…………………….. 13

4.0 Software Development Issues………………………………………… 13

1

PIV Data Validation Software Package

1.0 Introduction

The IBM PC/AT PIV data validation and post-processing algorithm provides the

capability for 1) removal of spurious vector data, 2) filtering, smoothing, and interpolating

of PIV data, and 3) calculations of out-of-plane vorticity, ensemble statistics, and

turbulence statistics information. The algorithm is stand alone and requires no hardware

control or manipulation. The software runs on an IBM PC/AT host computer working

either under Microsoft Windows v3.1 or Windows 95 operating systems. The processing

is semi-automated, requiring user input to a configuration file prior to program execution

for input of various validation system parameters. The executable program file is named

VALIDATE.exe with the configuration text file called VALIDATE.cfg.

2.0 Software Description

2.1 General Software Description

The software is modular in nature and applies various data validation and post-

processing steps in a sequential manner. The order of program execution typically

performs the following steps:

1) system initialization

2) read in configuration file parameters

3) read in PIV raw vector data file(s)

4) apply bandpass validator (if user requests)

5) apply local median validator (if user requests)

6) apply 3x3 median filter (if user requests)

7) apply image shift subtraction (if user requests)

8) calculate ensemble mean and ensemble standard deviation (if user requests)

9) calculate vorticity (if user requests)

10) calculate turbulence statistics (if user requests)

11) write validated data to file(s)

2

The user decides which of these validation step(s) will be applied to the data by

means of the validate.cfg configuration file. If a certain step is turned on in the

configuration file, then it is executed. If a certain step is not turned on in the configuration

file, then it is skipped. The program runs in a ‘batch’ mode type operation in which files

needing validation are read in and validated one after another. This requires a specific

type of file format where the base filename is the same for all the files and the file

extension increments from *.000 to *.max, where max is the number of files being

validated.

The program outputs five types of files. Validated vector files are the primary

output, and are validated and written out one after another as each file is validated. They

are output with the output base filename provided by the user in the configuration file, and

with the same file extension number read in from the input vector file. The second type of

file output is the ensemble statistic file, which writes out the results of the ensemble mean

and standard deviation calculations. The ensemble statistics filename takes the same

output base filename provided by the user in the configuration file, and has ‘*.add’ as its

file extension. The third type of file output is the turbulence statistics file, which writes

out the results of the 2nd order turbulence statistics calculations. The turbulence statistics

filename takes the same output base filename provided by the user in the configuration file,

and has ‘*.tur’ as its file extension. The fourth type of file output is also related to the

turbulence statistics calculations, and involves the evaluation of fluctuation velocity files.

These files have the same output base filename provided by the user in the configuration

file with an added ‘f’ at the end of the base filename (e.g. validated vector filename:

‘output.000’, vorticity filename: ‘outputf.000’). The file extension again takes the same

file extension number read in from the input vector file. The final type of file output is the

out-of-plane vorticity file(s), which write out the results of vorticity calculations to file. A

vorticity file in this case is output for every input vector file. The files have the same

output base filename provided by the user in the configuration file with an added ‘v’ at the

end of the base filename (e.g. validated vector filename: ‘output.000’, vorticity filename:

‘outputv.000’). The file extension again takes the same file extension number read in from

the input vector file.

2.2 Detailed Software Description

The program is made up of two ‘c’ source files, and three resource files. The

program is of a Windows ‘quickwin’ type which allows it to be run in Windows 3.1 or

Windows 95, but allows minimal user interaction. Interaction and control of various

3

program execution parameters is provided by a configuration file as described in the

introduction. The user edits the configuration file before program execution, and when

the program is run, the configuration parameters are read in from that file. The program

then displays the parameters on the monitor in a quickwin window and begins validation

with no further user input.

The source file VALIDATE.C is the primary vector validation program and will be

detailed in this section. The source file VALWIN.C develops and displays the quickwin

window and will not be detailed here. The user is referred to the commented listing

provided. The three additional resource files will also not be detailed here.

The source file VALIDATE.C contains eleven modular functions that perform the

various validation operations. The main() function begins and ends program execution

and performs memory allocation, initialization, and control functionality. Its first task is to

call the read_config() function which reads the configuration file parameters into global

variables for use later in the program. The main() function then continues on and prints

the configuration parameters in the quickwin windows, followed by data array memory

allocation calls. A looping function is called next which begins the actual validation

processing of individual raw data files. A function called onetenhund() converts the

current file extension number from an integer to a string so that input and output file

names can be developed for reading and writing purposes. Once the input and output

filename strings have been concatenated the program prints the current file number being

validated in the quickwin window and calls the function go().

The function go() groups all of the other function calls in one place and controls

which ones are called or not called based on what the user input in the configuration file.

The function first reads in the vector file data based on its format type (number of columns

of data in the file) based on one of two default types. It then applies the various validation

parameter file procedures provided by the user in the configuration file. The specific

procedures (function calls) given in order of their calling sequence include:

2.2.1 bandpass():

The bandpass() function performs a bandpass filter operation on the data. It is the

most subjective part of the validation program and requires user input for upper and lower

bandpass values. It is intended to be used on grossly deviant vectors relative to the

majority of vectors in the field. It was found necessary to include such a validation step

before the local median validator step (the local median validator is meant to be used as

4

the primary validator) because large deviant vectors tended to skew excessively the

validation parameters of the local median in some instances.

The bandpass() function treats the u and v velocity components separately, and

checks to see if the u and v values are within the maximum and minimum values provided

by the user in the configuration file. If either component is out-of-bounds, the second and

third centroid peak values are checked for out-of-bound conditions. If the second peak is

within bounds it replaces the first peak value (if the first was out). Similarly, if the third

peak value was within bounds, and the second and first were out, then it replaces the first.

Both the u and v components must be within bounds or both are considered out. If none

of the three peaks are valid, then the position is zeroed out.

Included in the bandpass() function, and prior to the actual bandpass operator

execution, an additional ‘zerocheck’ call is performed if the user indicated that in the

configuration file. This processing sub-step performs a check to see whether the

correlation peak was very nearly vertical or horizontal (conditions which exist because of

field edges or flair edges of objects in the image field). If performed, this validation check

zeroes out the position if the peak was nearly vertical or horizontal.

2.2.2 local_median():

The local_median() function is the primary validation feature of the program and

was found to be superior to other automated validation routines such as local mean, global

mean, and local divergence. It compares the center value to its nearest eight neighbors

based on their local median. It does this comparison based on an evaluation of the local

mean and local standard deviation levels of the eight neighbors. If the difference of the

local median and center value is more than three standard deviations of the local

neighborhood (8 neighbors), then it is considered invalid. The u and v velocity

components are again treated separately, and if one is found to be invalid, then both are

considered invalid. The second and third centroid values are again checked if the first is

found to be invalid as described previously. If all three values are found to be invalid, the

position is zeroed.

2.2.3 smooth():

The option of performing a 3x3 local mean filter function is then applied to the

data. If the user indicated, the local mean is calculated based on the eight nearest

neighbors of a point, and if there are two or more non-zero neighbors, the center point is

5

replaced with the local mean. This provides an interpolation if the center point was

originally zero, and otherwise a smoothing operation. The unaltered original data array is

used for all local mean calculations, and the new 3x3 filtered data is written to a new

temporary array, so that corruption of the original data is not allowed.

2.2.4 unshift():

The capability of removing image shift data from the flow data files is provided by

the unshift() function. If this option is chosen, the image shift filename provided by the

user in the configuration file is used to read in the image shift data using the read_cal()

function. If both the flow data and image shift data sets are non-zero for a given position,

the image shift is subtracted from the data.

2.2.5 ensemble

The ensemble average routine keeps a running count of the validated u and v

vector component values, summing each position for the incrementing validated files from

*.000 to *.max. When all data files have been validated, and the running ensemble sum

has been evaluated for each point in the flow, the ensemble sum at each point is divided by

the number of valid sum values, which gives the ensemble mean at each point:

for u ≠ 0 and v ≠ 0 u ui
i

=
=
∑1

0
max

max

 and v vi
i

=
=
∑1

0
max

max

where only non-zero values are included in the ensemble calculation for each point in the

flow.

2.2.6 standard_dev():

Following the ensemble mean calculation, an ensemble standard deviation routine

is run. The ensemble standard deviation keeps a running count of the square of the

difference between the ensemble mean and the validated data point:

for u ≠ 0 and v ≠ 0 sdu
u
i

u
i=

−∑

−
=

()

max

max

1

2

1
 and sdv

v
i

v
i=

−∑

−
=

()

max

max

1

2

1

6

where again, only non-zero values are included in the ensemble calculation for each point

in the flow.

2.2.7 vorticity():

The out-of-plane (spanwise) component of vorticity is given by:

ω ∂
∂

∂
∂z

v

x
 =

 -

 u

 y
)

1

2
(

where (u,v) are the in-plane (x,y) velocity components. By invoking Stokes’ theorem to

relate the circulation per unit area around a point of interest, a numerical approximation

can be implemented to the above equation. Defining the closed contour by the eight

points surrounding the node at which the vorticity is to be evaluated we obtain:

ω z i j i j i j

i j i j i j

i j i j i j

i j i j i j

l

l
u u v

v u v

u u v

v u v

= x + +

+ +

+

+

,

,

,

,

∆
∆()

()

()

()

()

{

}

, ,

, ,

, ,

, ,

2

1

2

1

2
1

2
1

2

2 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

− + − + −

+ + + + +

+ − + − +

− − − − −

−

− −

− +

where ∆l is the grid step size. The above equation was used to evaluate the local out-of-

plane vorticity using the eight surrounding neighbors of a point in the flow for each

individual data file. If any of the neighbors u or v components were zero, the vorticity

was set to zero.

2.2.8 fluctuate():

The capability of removing the ensemble mean flow data from the individual flow

data files is provided by the fluctuate() function. If this option is chosen, the fluctuating

velocity subtraction filename (i.e. the ensemble mean filename) provided by the user in the

configuration file is used to read in the ensemble mean flow data using the read_fluct()

function. If both the individual flow data and ensemble mean flow data sets are non-zero

for a given position, the mean flow is subtracted from the data.

7

2.2.9 tstat():

The turbulence statistics function tstat() calculates the 2nd order turbulence

intensities <u’u’>, <v’v’>, and <u’v’>. Fluctuating velocity files are read in one at a time,

where the fluctuating velocity components are multiplied and a running sum is calculated:

for u≠ 0 and v≠ 0 < >= −
=
∑u u u ui
i

’ ’ ()max

max
1 2

0

< >= −
=
∑v v v vi
i

’ ’ ()max

max
1 2

0

[]< >= − −
=
∑u v u u v vi i
i

’ ’ () *()max

max
1

0

where once again, only non-zero values are included in the turbulence intensity

calculations for each point in the flow.

2.2.10 write_data():

Data is written out to files in two basic ways. Validated velocity, fluctuating

velocity, and vorticity data is written out on a file-by-file basis, and each process results in

an additional file for each data file that was input. The validated velocity data is written

out by the function write_data(), while the fluctuating velocity, and vorticity data is

written out to file in the body of the main() function. The ensemble statistic and

turbulence statistic files result in a single file being written out for each. Each of these is

also written out to file in the body of the main() function.

The output file formats for each process also differ and take one of four forms.

The validated data and fluctuating velocity data files are output with the same format as

the input raw data files and have eleven columns of data across. The data columns include

the following data types:

column 1 column2 column3 column4 column5 column6 column7 column8 column9 column10 column11

x position y position 1st u 1st v 1st peak 2nd u 2nd v 2nd peak 3rd u 3rd v 3rd peak

where u and v are the u and v velocity components, respectively, and peak is the relative

centroid correlation peak height recorded during the analysis process. The 1st, 2nd, and 3rd

8

designations represent the strongest, 2nd strongest, and 3rd strongest correlation peak

heights, respectively.

The vorticity file is output with only five columns of data across given by:

column 1 column2 column3 column4 column5

x position y position u v vorticity

where u and v are the validated velocity components, and vorticity is the calculated out-

of-plane vorticity at the position x,y.

Ensemble statistics are output to file with eight columns of data across given by:

column 1 column2 column3 column4 column5 column6 column7 column8

x position y position mean u mean v sdu sdv # files 0

where mean u and mean v are the ensemble component means, sdu and sdv are the

ensemble component standard deviations, and #files is the number of validated vectors

available (used) for calculating the ensemble statistics for that point. The last column 8 is

a dummy variable and is not used.

The final output data format for the turbulence statistic file has six columns of data

across given by:

column 1 column2 column3 column4 column5 column6

x position y position <u’u’> <v’v’> <u’v’> # files

where <u’u’> and <v’v’> are the turbulence intensity components, <u’v’> is the Reynold’s

stress , and # files is again the number of valid files used in calculating the turbulence

statistics for that point.

3.0 Data Validation

3.1 Validation Procedures

The PIV data validation process is typically an iterative process in nature and

requires the validation program to be run several times with different parameters and steps

turned on each time. The basic validation process begins with editing of the validate.cfg

file with a text editor program. This file takes the form shown below:

9

PIV validation configuration file: VALIDATE.CFG

Basically three types of input are required by the user. First, various processing

operations are either turned on or off depending on the desired output. This is

accomplished by editing the appropriate operation parameter with either a ‘y’ for yes, or

‘n’ for no. The second type of user input involves editing the seven numerical input

values. Four are used for the bandpass operator function, and the remaining three are

used for overall test condition inputs. In particular, two numbers are required for the

number of vectors points in the x and y directions, respectively, and one number is

required for the number of files included in the overall data set that need validated. The

final type of user input requires various file input strings for either file basename inputs or

full filenames.

Once the validation configuration file is edited and saved, the validation executable

program is run. Depending on the type of processing to be done, and the number of files

involved the processing should take several seconds to approximately 1-2 minutes. The

program, when executing, displays the parameter set on the screen, and also displays a

number representing the current data file being validated as it executes.

There are typically three types of validation and post-processing functions that the

program will be used for, and each of these has a particular processing sequence that has

in the past produced the desired results. They include:

Software_Version_Number: 1.1
Apply_Bandpass_Validator_(y/n)? y
Apply_Local_Median_Validator_(y/n)? y
Apply_3x3_Local_Mean_Filter_(y/n)? y
Apply_Image_Shift_Removal_(y/n)? y
Apply_Vector_Zero_Checking_(y/n)? y
Calculate_Ensemble_Average_File_(y/n)? y
Calculate_Out_of_Plane_Vorticity_Files_(y/n)? y
Calculate_Fluctuating_Velocity_Files_(y/n)? n
Calculate_Turbulence_Statistics_File_(y/n)? n
Upper_Bandpass_Threshold_Level_for_U: -9.5
Lower_Bandpass_Threshold_Level_for_U: -34.0
Upper_Bandpass_Threshold_Level_for_V: 50.0
Lower_Bandpass_Threshold_Level_for_V: 41.0
Number_of_Vectors_in_x_direction: 90
Number_of_Vectors_in_y_direction: 90
Input_Raw_File(s)_Base_Name: f90r9.v4n
Output_Validated_Vector_File_Name: f90r9.v4t
Input_Image_Shift_Removal_Filename: r9add46.v6
Input_Fluctuating Velocity_Subtraction_Filename: r9add46.add
Number_of_Files_to_Validate: 3

10

1) Validation of Image Shift Data

2) Validation of Flow Data

3) Evaluation of Turbulence Statistics Information

Each of these are done in order, beginning with validation of image shift data.

This is because the flow data usually needs a validated image shift subtraction file for

validation to proceed. The turbulence statistics evaluation process likewise needs a

validated ensemble mean flow file for processing to proceed. A brief description of the

processing steps for each is provided below.

3.1.1 Image Shift Validation Steps

Image shift data validation requires three steps of processing. The first step

involves determining appropriate u and v bandpass cutoff values for the bandpass validator

algorithm. Raw PIV data typically includes a number of vectors that are dramatically

different from the majority of the vectors in the data set. They are easy to distinguish

visually, and their exclusion from the data set before further processing is done is the main

reason for use of the bandpass validator operator. An example raw data file and bandpass

validated file are depicted below for illustration.

The main objective of the initial bandpass operation is to remove obvious bad

vectors, but also to be the least restrictive as possible. Choose upper and lower u and v

component cutoff levels that just discriminate between the majority of good vectors and

the few obvious bad vectors in the file. Also, when working with the validation of several

11

files at once, check to see that the upper and lower limits are suitable for all vector files

being validated.

Once adequate upper and lower bandpass limits have been determined, the second

step to image shift data validation involves including the new bandpass values in the

configuration file. Also set the validator operator switches to on for:

1) the bandpass operator,

2) the local median validator,

3) the 3x3 local mean filter,

4) the vector zero checking,

5) and the ensemble averager,

and turn the remaining validator operator switches to off. Also input the raw data file

basename for the analyzed data, the output validated basename you would like, the

number of vectors in the x and y directions, and the number of files in the data set. Once

this has all been input and saved to the configuration file, the validate.exe program is run.

Upon completion of the program, check the new ensemble average file that was

created, and if necessary, make note of any vectors that appear to still be in error (record

the x and y positions as well as the u and v vector component levels). If any are found,

the third step involving manual extraction of bad vectors should be accomplished. This is

done with a text editor, and involves opening the output ensemble average file with the

editor, and inserting zeroes in place of the bad vector u and v component locations at the

appropriate places. (The need for a manual vector extraction is sometimes necessary for

the image shift ensemble file in that it will be used for subtraction for all of the flow data

files in the next validation type, and if there are any obvious errors in the new image shift

subtraction file they will propagate through all of the data to come).

Once the image shift ensemble average file has been completely validated, the

processing of the raw flow data files can begin.

3.1.2 Flow Data Validation Steps

The validation of the flow data files follows a similar procedure to the image shift

data validation and involves four steps. The first step again involves determining

appropriate u and v bandpass cutoff values for an initial pass of the bandpass validator

algorithm. The main objective of the initial bandpass operation is again to remove obvious

bad vectors, but to be the least restrictive as possible. Choose upper and lower u and v

12

component cutoff levels that just discriminate between the majority of good vectors and

the few obvious bad vectors in the file. And again, when working with the validation of

several files at once, check to see that the upper and lower limits chosen are suitable for all

vector files being validated.

The second step involves setting up the configuration file with the new upper and

lower bandpass limits, and setting the validator operator switches to on for:

1) the bandpass operator,

2) the local median validator,

3) the image shift removal,

4) the vector zero checking,

5) and the ensemble averager,

and turn the remaining validator operator switches to off. Notice that the image shift

removal function has been turned on, and the 3x3 mean filter has been turned off. Also

input the raw data file basename for the analyzed data, the output validated basename you

would like, the full filename of the image shift subtraction ensemble file, the number of

vectors in the x and y directions, and finally the total number of files in the data set. Once

all of this has been input to the configuration file, save it, and begin the validate.exe

executable program.

The third step involves re-evaluating the bandpass validator upper and lower limits

for the new data set that was just created with the image shift removed. A dual-pass

approach of the bandpass and validator algorithms in general - once before image shift

removal, and once after image shift removal, has proven over time to be the best approach

for overall data validation and data rates. With the image shift removed at this point, flow

features should be evident, and visual inspection of the flow and possible stray vectors

should allow refinement of the bandpass limits. Again remember to check to see that the

upper and lower limits check are suitable for all vector files being validated, especially if

the flow is unsteady in nature.

The fourth and final step involves updating the configuration a final time with the

new bandpass validator limits, and setting the validator operator switches to on for:

1) the bandpass operator,

2) the local median validator,

3) the 3x3 mean filter,

4) and the ensemble averager.

13

The calculate out-of-plane vorticity switch may also be optionally turned on at this

point to create a set of output vorticity files. The input file basename should be set for the

output file basename that was used in the previous step (actually step #2), and the output

validated basename can again be set to what you would like. Once all of this has been

input to the configuration file, save it, and begin the validate.exe executable program.

This should produce a final validated flow data set and flow ensemble mean and standard

deviation file. Manual extraction of stray vectors should not be needed, but after

examination of the output files may be at your discretion.

Once the flow data’s ensemble average file has been generated, the turbulence

statistics processing can begin.

3.1.3 Turbulence Statistics Evaluation

The evaluation of turbulence statistics information requires two additional steps.

A set of fluctuating velocity files must first be generated by subtracting the ensemble mean

flow file from the individual validated flow data files. This is accomplished by setting the

calculate fluctuating velocity switch to ‘y’ yes in the configuration file, and by setting the

input file basename to the final validated flow data set’s base filename, and the full

filename of the ensemble average flow data filename in the fluctuating velocity ensemble

subtraction filename space. Once this has been entered, and the configuration file has been

saved, the validate.exe file should be executed. This will create a new series of files with

the an ‘f’ appended to the beginning of the input base filename, and represents the

fluctuating velocity components of the flow in each original data file.

The second step involves setting the calculate turbulence statistics switch to ‘y’ yes

and all other switches to ‘n’ no. Set the input file basename to the new fluctuating

velocity file basename created in step #1, and set the output base filename to the base

filename you would like the turbulence statistics file to have. Once this is done and saved

in the configuration file, execute the validate.exe one last time. This will create the

turbulence statistics file with the base filename you input, and the *.tur extension.

4.0 Software Development Issues

The validation software was written in a Microsoft ‘quickwin’ format, which

allows the program to be run in Windows 3.1 or Windows 95, but which doesn’t allow

any user interaction with the program while it is running. Five separate files are required

during the compile and link process:

14

1) Validate.c - The validation program source file

2) Valwin.c - The quickwin source file

3) Validate.def - The definition file for the program

4) Validate.rc - The resource file for the program

5) Validate.ico - The bitmap icon for the program

In addition, a command line batch file has been used to control the compile, link,

and resource compiler stages of the build process. This files name is Validate.bat. The

program was compiled with Microsoft C compiler version v8.00, linker version v5.5, and

resource compiler v3.11.

Editing of the code to add new functionality, or to change existing capabilities is

relatively straight forward. The modular nature of the code allows this. The quickwin

source file Valwin.c, definition file Validate.def, resource file Validate.rc, and icon file

Validate.ico should not require any changes and should be left alone if possible.

A copy of the compile/link batch file listing is provided below:

cl -c -AL -Gsw -Zpe -DC_MSC -Dmain=Cmain validate.c valwin.c
link /NOD /NOE validate+valwin,,,libw Llibcew m4obM7WL pxipM7WL,validate.def
rc -K validate.rc validate.exe

It calls the Microsoft compiler, linker, and resource compiler, with various switches setup

for a quickwin application.

This software package was developed under contract to NASA. Requests for copies of
the source and executable codes described in this report should be directed in writing to
one of the following:

NASA Langley Research Center
Technology Applications Group
Mail Stop 118
Hampton, Virginia 23681-0001

or

Vigyan, Inc.
Aeronautical Research Group
30 Research Drive
Hampton, Virginia 23666-1325

